# The Conformational Analysis of Saturated Heterocycles. Part LXIV. ${ }^{1}$ Stereochemical Orientation of the Ethylation of Piperidines 

By Victor J. Baker, lan D. Blackburne, and Alan R. Katritzky, ${ }^{*}$ School of Chemical Sciences, University of East Anglia, Norwich NOR 88C


#### Abstract

Rates of reaction of a series of 1 -alkyl-4-phenylpiperidines with ethyl iodide in methanol and in acetonitrile and the proportions of the isomeric quaternary salts formed are reported. Axial ethylation predominates for all cases studied, but the equatorial :axial product ratios often approach unity, and the stereoselectivity is intermediate between those found for methylation (preference for axial attack) and benzylation (preference for equatorial attack).


The steric course of quaternisation of piperidine derivatives, reviewed recently, ${ }^{2-5}$ has been the subject of considerable attention. Both axial and equatorial approach occur simultaneously and the isomer ratio depends markedly on solvent, alkylating agent, and substrate structure. Methylations of simple piperidines appear to take place predominantly by axial approach, ${ }^{2-5}$ but the larger, less reactive electrophiles benzyl chloride and $p$-nitrobenzyl chloride ${ }^{6,7}$ react by predominant equatorial attack. Reversion to zero selectivity (benzyl iodide ${ }^{8}$ ) or axial attack (benzyl tosylate ${ }^{9}$ and $p$-methoxybenzyl chloride ${ }^{6}$ ) occurs when the reactivity of such alkylating agents is enhanced. To define the limits of this stereochemical ' changeover' we report results with $N$-alkyl-4-phenylpiperidines and ethyl iodide in acetonitrile and in methanol.
The reaction of ethyl iodide with 1-methyl-4-phenylpiperidine in acetone was initially concluded ${ }^{10}$ to
${ }^{1}$ Part LXIII, R. A. Y. Jones, A. R. Katritzky, S. Saba, and A. J. Sparrow, preceding paper.
${ }_{2}$ R. A. Y. Jones, A. R. Katritzky, and P. G. Mente, J. Chem. Soc. (B), 1970, 1210.
${ }^{3}$ A. T. Bottini in 'Selective Organic Transformations,' ed. B. S. Thyagarajan, Wiley-Interscience, New York, 1970, vol. 1, pp. 89-142.

4 J. McKenna, Topics Stereochem., 1970, 5, 275.
5 J. McKenna in 'Conformational Analysis. Scope and Present Limitations,' ed. G. Chiurdoglu, in the series 'Organic Chemistry. A Series of Monographs,' ed. A. T. Blomquist, Academic Press, New York, 1971, vol. 21, p. 165.
${ }^{6}$ R. P. Duke, R. A. Y. Jones, and A. R. Katritzky, J.C.S. Perkin II, 1973, 1553.
proceed with a degree of axial stereoselectivity comparable to that of methylation of the $N$-ethyl derivative (viz. ca. $85-95 \%$ ). However, more accurate determination of product ratios ${ }^{8}$ showed much less preference for axial attack ( $50-60 \%$ ). Quaternisation of 1 -methyl-4-t-butylpiperidine with the more reactive ethyl toluene- $p$-sulphonate in acetone ${ }^{9}$ gave $83 \%$ axial ethylation, whereas 4 -formyl-1-methyl-4-phenylpiperidine with ethyl iodide in ether ${ }^{11}$ gave $55 \%$ axial attack in agreement with McKenna's revised ${ }^{8}$ value. Ethylation thus appeared to exhibit a preference for axial attack, but with lower selectivity than for the methylation of the corresponding $N$-ethylpiperidine.
For tropane derivatives, although most evidence ${ }^{3}$ favours equatorial approach, its validity has been questioned. ${ }^{8}$ Recent chemical and $X$-ray work ${ }^{12,13}$ has confirmed that methylation, alkoxycarbonylmethylation, and other quaternisations in the tropane, tropine, tropinone, and pseudotropine series all involve preferential equatorial attack.

7 A. T. Bottini, personal communication quoted in ref. 2.
${ }^{8}$ D. R. Brown, R. Lygo, J. McKenna, J. M. McKenna, and
B. G. Hutley, J. Chem. Soc. (B), 1967, 1184.
${ }^{9}$ H. O. House, B. A. Tefertiller, and C. G. Pitt, J. Org. Chem., 1966, 31, 1073.
${ }^{10}$ J. McKenna, J. M. McKenna, A. Tulley, and J. White, J. Chem. Soc., 1965, 1711.
${ }_{11}^{11}$ M. A. Iorio and S. Chiavarelli, Tetrahedron, 1969, 25, 5235. ${ }^{12}$ G. Fodor, R. V. Chastain, jun., D. Frehel, M. J. Cooper, N. Mandava, and E. L. Gooden, J. Amer. Chem. Soc., 1971, 93, 403.
${ }^{13}$ U. O. De La Camp, A. T. Bottini, C. C. Thut, J. Gal, and A. G. Bellettini, J. Org. Chem., 1972, 37, 324.

RESULTS
Ratios $\left(A_{a} / A_{e}\right)$ of axial to equatorial attack were determined from the n.m.r. spectra of the products (Tables 1 and 2). The quaternisation product of 1 -methyl-4-phenylpiperidine (1) exhibits two $N$-methyl absorptions (Table 1). The less intense resonance had a chemical shift identical (Table 2) with that of the $N$-methyl absorption of the ax- $N$-methyl-eq- $N$-ethyl compound (12) of known configuration established by
greater difficulty owing to the complexity of the n.m.r. spectra. Interpretation was facilitated by the use of appropriately deuteriated substrates. Ethylation of 2,2,6,6-tetradeuterio-1-isopropyl-4-phenylpiperidine (3) gave a product mixture exhibiting two quartets at $\delta\left(\mathrm{CDCl}_{3}\right) 3.62$ and 3.85 attributed to $N$-methylene absorptions. Since the major products from ethylation of the methyl and benzyl analogues have been shown (see above) to be the isomers with axial ethryl groups, the

Table 1
Proton chemical shifts ${ }^{a}$ for ethiodides

| Compound | Proton chemical shifts ${ }^{\text {a }}$ for ethiodides |  |  |  |  | $A_{a} / A_{e}{ }^{c}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Acetonitrile ${ }^{\text {b }}$ |  |  | Methanol ${ }^{\text {b }}$ |  |  |
|  | Resonance ( $\delta$ ) | Assignment | $A_{a} / A_{e}{ }^{\circ}$ | Resonance ( $\delta$ ) | Assignment |  |
| $N-\mathrm{Me}$ (1) | 3.21, $3 \cdot 29^{\text {d }}$ | eq Me | $1 \cdot 3$ | $3 \cdot 18$ | $e q \mathrm{Me}$ | 1.4 |
|  | 3-18, $3 \cdot 42^{\text {d }}$ | $a x \mathrm{Me}$ |  | $3 \cdot 21$ | ax Me |  |
| $N-\mathrm{CH}_{2} \mathrm{Ph}(\tilde{5})$ | 4.53 | $e q \mathrm{CH}_{2} \mathrm{Ph}$ | $3 \cdot 6$ | $4 \cdot 52$ | $e q \mathrm{CH}_{2} \mathrm{Ph}$ | 4.4 |
|  | $4 \cdot 70$ | ax $\mathrm{CH}_{2} \mathrm{Ph}$ |  | $4 \cdot 69$ | ax $\mathrm{CH}_{2} \mathrm{Ph}$ |  |
| $N-E t(6)$ | $3 \cdot 45$ | $e q \mathrm{Et}$ | $1 \cdot 3$ | $3 \cdot 47$ | $e q \mathrm{Et}$ | 1.5 |
|  | $3 \cdot 60$ | $a x \mathrm{Et}$ |  | $3 \cdot 61$ | ax Et |  |
| $N-\operatorname{Pr}^{1}(17)$ | $3 \cdot 62{ }^{\text {d }}$ | $e q \mathrm{Et}$ | $1 \cdot 9$ | $3 \cdot 63{ }^{\text {d }}$ | eq Et | $2 \cdot 0$ |
|  | $3 \cdot 85{ }^{\text {d }}$ | $a x \mathrm{Et}$ |  | $3 \cdot 87{ }^{\text {d }}$ | $a x \mathrm{Et}$ |  |

${ }^{a}$ For $\mathrm{ca} .10 \%$ solutions in $\mathrm{CF}_{3} \cdot \mathrm{CO}_{2} \mathrm{H} .{ }^{b}$ Solvent for quaternisation, containing $1 \%(\mathrm{v} / \mathrm{v})$ of water. ${ }^{c}$ Integrated intensity ratios for products of axial $\left(A_{a}\right)$ and equatorial $\left(A_{e}\right)$ attack; standard deviations $\pm 0 \cdot 2$. ${ }^{a}$ Measured in $\mathrm{CDCl}_{3}$.
$X$-ray crystallography. ${ }^{14}$ The major product from ethylation of 1-methyl-4-phenylpiperidine was therefore assigned the eq-1-methyl-ax-1-ethyl configuration (7). The ethiodides of 1-benzyl-4-phenylpiperidine (5) showed $\mathrm{PhCH}_{2}$ resonances at $\delta 4.55$ and 4.69 (Table 1). The $e q-N$-benzyl-ax- $N$-ethyl compound (11) has had its structure verified by $X$-ray crystallography of the chloride; ${ }^{15}$ it exhibits $\mathrm{PhCH}_{2}$ absorption at $\delta\left(\mathrm{CF}_{3} \cdot \mathrm{CO}_{2} \mathrm{H}\right)$ $4.50^{16}$ (misprinted in Table 1 of ref. 6 as $\delta 5 \cdot 50$ ). The isomer (16), which must therefore have its benzyl group axial, shows PhCH signal at $\delta\left(\mathrm{CF}_{3} \cdot \mathrm{CO}_{2} \mathrm{H}\right) 4 \cdot 68 .{ }^{6}$ Allowing for the difference in gegenanion, the major ethiodide of (5) is therefore the eq-benzyl configuration. Hence axial ethylation predominates in this reaction also.

Table 2
Proton chemical shifts of 1,1-disubstituted 4-eq-phenylpiperidinium salts with known configurations

| 1,1-Substituents |  | Compound no. | $\begin{aligned} & \text { Ref. } \\ & a \quad b \end{aligned}$ | Chemical <br> shift ( $\delta$ ) ${ }^{\circ}$ | Assignment |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $a x$ | $e q$ |  |  |  |  |
| Me | Et | $(12)^{d}$ |  | $\begin{gathered} 3.211^{i} \\ \left(3.38^{m}\right) \end{gathered}$ | $a x \mathrm{Me}$ |
| Et | Me | (7) ${ }^{e}$ | $j$ | $\begin{gathered} 3 \cdot 18^{\prime} \\ \left(3 \cdot 30^{m}\right) \end{gathered}$ | eq Me |
| Et | $\mathrm{CH}_{2} \mathrm{Ph}$ | (11) $f$ | $k$ | $4.50{ }^{n}$ | eq $\mathrm{CH}_{2} \mathrm{Ph}$ |
| $\mathrm{CH}_{2} \mathrm{Ph}$ | Et | (16) g | $k$ | $4 \cdot 68{ }^{\text {n }}$ | ax $\mathrm{CH}_{2} \mathrm{Ph}$ |

${ }^{a}$ To $X$-ray analysis. ${ }^{b}$ To chemical work. ${ }^{c}$ For $10 \%$ solutions in trifluoroacetic acid. ${ }^{\text {a }}$ Major methiodide of (2) (ref. 14). ${ }^{e}$ Minor methiodide of (2) (ref. 14). $f$ Major benzochloride of (2) (ref. 15). $\quad$ Minor benzochloride of (2) (ref. 15).
${ }^{h}$ Ref. 14. ${ }^{i}$ Ref. 17. ${ }^{j}$ Ref. 2. ${ }^{k}$ Ref. 6. ${ }^{i}$ Methiodide prepared and spectrum measured in this work. ${ }^{m}$ Measured in $\mathrm{CDCl}_{4}$ (P. G. Mente, Ph.D. Thesis, University of East Anglia, 1967). ${ }^{n}$ Ref. 16.

Determination of the ratios of products resulting from the ethyl (2) and the isopropyl (3) compounds presented
${ }^{14}$ W. Fedeli, F. Mazza, and A. Vaciago, J. Chem. Soc. (B), 1970, 1218.
${ }^{15}$ J. R. Carruthers, W. Fedeli, F. Mazza, and A. Vaciago, J.C.S. Perkin II, 1973, 1558.
more intense low-field methylene signal may be assigned to the ax-ethyl isomer. ${ }^{17}$

The reaction of 2,2,6,6-tetradeuterio-1-( $\alpha \alpha$-dideuterio-ethyl)-4-phenylpiperidine (6) with ethyl iodide similarly

gave two isomers showing $\mathrm{N} \cdot \mathrm{CH}_{2}$ quartets centred at $\delta\left(\mathrm{CF}_{3} \cdot \mathrm{CO}_{2} \mathrm{H}\right) 3 \cdot 45$ and $3 \cdot 60$. The major product is again by analogy assigned the ax-ethyl-eq-dideuterioethyl configuration.

Kinetics of the reactions were studied at $25^{\circ}$ by the previously described methods. ${ }^{2,6,18}$ Plots of conductivity vs. concentration for some of the product quaternary salts revealed curvature in completely anhydrous solvents, possibly arising from ion-pairing at higher
${ }^{18}$ R. P. Duke, Ph.D. Thesis, University of East Anglia, 1971.
${ }^{17}$ An $X$-ray examination is in progress: A. Vaciago, unpublished work.
${ }_{18}$ M. Shamma and J. B. Moss, J. Amer. Chem. Soc., 1961, 83, 5038.
concentrations. Linear conductivity-concentration plots were obtained in acetonitrile and in methanol containing a small amount of water and the kinetics were therefore determined for $1 \%$ ( $\mathrm{v} / \mathrm{v}$ ) aqueous solutions in methanol and in acetonitrile. Measurements were not carried out in acetone since addition of small proportions of water still failed to give a linear relationship. The effect of $1 \%$ of water in methanol or acetonitrile is small; for example, quaternisation of (1) with benzyl chloride in $1 \%$ aqueous acetonitrile * gave an observed rate constant of $2.15 \times 10^{-4}$ (cf. $2.40 \times 10^{-4}$ reported ${ }^{6}$ for acetonitrile) and individual rate constants for equatorial $\left(k_{e}\right)$ and axial $\left(k_{a}\right)$ attack were $5.73 \times 10^{-4}$ and $0.96 \times 10^{-4}$, respectively ( $c f .{ }^{6} k_{e}=6.40 \times 10^{-4}$ and $k_{a}=1.07 \times 10^{-4}$ ). A further experiment employing $2 \%$ aqueous acetonitrile also showed no difference within experimental error. Since ethyl iodide in $1 \%$ aqueous acetonitrile develops no conductivity, no solvolysis of the iodide can have occurred.

Rate constants under pseudo-unimolecular conditions were obtained by standard Guggenheim analysis ${ }^{19}$ of the data and converted into second-order rate constants by dividing by the concentration of ethyl iodide. Equations (i) and (ii), where $K$ is the equilibrium constant $[A] /[B]$ (see formulae), give the individual rate constants $k_{e}$ and $k_{a}{ }^{6,20}$ Values for the populations of

$$
\begin{align*}
k_{e} / k_{a} & =K\left(A_{e} / A_{a}\right)  \tag{i}\\
k_{\mathrm{obs}} & =k_{e} /(K+1)+k_{a} K /(K+1) \tag{ii}
\end{align*}
$$

the conformers (1A) $(75 \%)$, ( 2 A ) $\left(85 \%\right.$ ), and (3A) $(94 \%)^{21}$ were used as before. ${ }^{6} \dagger$ The benzyl derivative (5) is assumed to be $\geqslant 90 \%$ ( 5 A ) on the supposition that its conformational equilibrium is intermediate between those of (2) and (3). The t-butyl compound (4) failed to show pseudo-unimolecular reaction kinetics probably because of a competing elimination reaction 22 and is not discussed further. The results are collected in Table 3.

## EXPERIMENTAL

Solvents were fractionated and stored over activated molecular sieves. Ethyl iodide was fractionated and stored for short periods at $5^{\circ}$ over mercury. Substituted piperidines were prepared by application of general methods; ${ }^{23}$ the products possessed i.r. and n.m.r. spectra, elemental analyses, and b.p.s in agreement with literature data. ${ }^{\text {10, } 24,25}$

2,2,6,6-Tetradeuterio-1-( $\alpha \alpha$-dideuterioethyl)-4-phenylpiper-idine.-3-Phenylglutarimide ${ }^{26}(1.1 \mathrm{~g}, 0.005 \mathrm{~mol})$ in anhydrous tetrahydrofuran (THF) ( 10 ml ) was added dropwise to lithium aluminium deuteride $(99 \%, 0.5 \mathrm{~g}, 0.011 \mathrm{~mol})$

[^0]in anhydrous THF ( 10 ml ) during 5 min at $0^{\circ}$. After 30 min at $50-60^{\circ}$ it was cooled to $0^{\circ}$, and water ( 0.5 ml ), aq. $\mathrm{NaOH}(1 \mathrm{~N} ; 0.5 \mathrm{ml})$, and water ( 1.5 ml ) were successively added. The precipitate was removed and the filtrate dried $\left(\mathrm{K}_{2} \mathrm{CO}_{3}\right)$ and evaporated to give a pale yellow oil $(0.5 \mathrm{~g})$. To this oil in pyridine (at $\left.0^{\circ}\right)(2 \mathrm{ml})$ acetyl chloride ( $c a .5 \mathrm{ml}$ ) was added dropwise. The mixture was poured onto ice and water and extracted with ether, and the ethereal solution dried $\left(\mathrm{K}_{2} \mathrm{CO}_{3}\right)$ and evaporated to give an oil $(0.5 \mathrm{~g})$. This oil was reduced as before with lithium aluminium deuteride ( 0.2 g ) and the product ( 220 mg ) chromatographed over alumina (neutral; 25 g ) with chloroform and methanol to give a pale yellow oil $(0.15 \mathrm{~g}$, $4 \%), \delta\left(\mathrm{CDCl}_{3} ; 60 \mathrm{MHz}\right) 7 \cdot 25(5 \mathrm{H}, \mathrm{s}), 3 \cdot 30(1 \mathrm{H}, \mathrm{m}), 2 \cdot 80$ $(4 \mathrm{H}, \mathrm{m})$, and $1 \cdot 10(3 \mathrm{H}, \mathrm{s})$.
2,2,6,6-Tetradeuterio-1-isopropyl-4-phenylpiperidine.- 3Phenylglutaric acid ${ }^{26}(2.08 \mathrm{~g}, 0.01 \mathrm{~mol})$ in anhydrous ether $(40 \mathrm{ml})$ was added dropwise to lithium aluminium deuteride $(1.0 \mathrm{~g}, 0.024 \mathrm{~mol})$ in anhydrous ether ( 20 ml ) during 5 min . After 3 h under reflux the mixture was cooled and water cautiously added ( 6 ml ), followed by $6 \mathrm{~N}-\mathrm{HCl}$ to dissolve the precipitate $(25 \mathrm{ml})$. The ethereal layer was washed $\left(2 \times 10 \mathrm{ml}\right.$ of saturated aq. $\left.\mathrm{Na}_{2} \mathrm{CO}_{3}\right)$, dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated. To the crude diol in pyridine ( 5 ml ) at $-10^{\circ}$ was slowly added tosyl chloride at such a rate that the temperature remained below $-5^{\circ}$. After stirring at $0^{\circ}$ for 8 h ice ( 10 g ) was added followed by $6 \mathrm{~N}-\mathrm{HCl}(5 \mathrm{ml})$. The solution was extracted with ether ( $2 \times 10 \mathrm{ml}$ ) and the extracts washed successively with 10 ml portions of $\mathrm{N}-\mathrm{HCl}$, $\mathrm{N}-\mathrm{NaOH}$, and $\mathrm{H}_{2} \mathrm{O}$. When set aside, the ethereal solution gave white prisms, which were boiled in isopropylamine under anhydrous conditions for 3 h . The amine was then removed under vacuum and the oily residue made alkaline with $2 \mathrm{~N}-\mathrm{NaOH}(1 \mathrm{ml})$. The aqueous solution was extracted with ether $(2 \times 5 \mathrm{ml})$ and the extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ Filtration followed by evaporation gave an amber oil which was microdistilled yielding the product ( $0.2 \mathrm{~g}, 10 \%$ ) as an oil, b.p. $100-105^{\circ}$ at 0.15 mmHg .
lax-Ethyl-1eq-isopropyl-4eq-phenylpiperidinium Iodide.-1-Isopropyl-4-phenylpiperidine ( $1.9 \mathrm{~g}, 0.01 \mathrm{~mol}$ ) in dry AnalaR acetone ( 20 ml ) was heated under reflux with ethyl iodide ( $1.46 \mathrm{~g}, 0.01 \mathrm{~mol}$ ) for 20 h . Crystals ( 1.1 g ) which separated from the cooled solution were recrystallised from acetonitrile $(\times 4)$ and from water $(\times 1)$ to give the iodide $(0.23 \mathrm{~g}, 10 \%)$, m.p. 201-203 ${ }^{\circ}$ (hot-stage), as needles (Found: C, $53 \cdot 1 ; \mathrm{H}, 7 \cdot 2 ; \mathrm{N}, 4 \cdot 1 . \quad \mathrm{C}_{16} \mathrm{H}_{26} \mathrm{IN}$ requires C , $53 \cdot 1 ; \mathrm{H}, 7.3 ; \mathrm{N}, 3.9 \%$ ).

Product Ratios.-Quaternary salts were formed at $25^{\circ}$ by treating the amine $(0.10 \mathrm{~g})$ in the appropriate solvent ( 2 ml ) with ethyl iodide $(0.8 \mathrm{~g}$ ) for $2-4$ times the reaction half-life. The solvent was removed by freeze-drying and the crude solid dissolved in trifluoroacetic acid to give a ca. $10 \%$ solution. The n.m.r. spectrum was recorded ( 100 or 220 MHz ) and the product ratio determined from duplicate sweeps of the appropriate region.

[^1]Kinetic Quaternisations.-Solutions were prepared under nitrogen and measurements using apparatus previously described ${ }^{6}$ made at $25.0 \pm 0.01^{\circ}$ for each solvent used.

Amine ( $10-30 \mathrm{mg}$ ) and freshly prepared $1 \cdot 0 \%(\mathrm{v} / \mathrm{v})$ aqueous solvent ( 10 ml ) were weighed under nitrogen into the tared cell. After equilibration of the cell and ethyl iodide at $25.0 \pm 0.01^{\circ}, c a .1 \mathrm{ml}$ of the latter, accurately measured, was added. The increase in conductivity was followed by use of a Wayne Kerr B641 bridge. The pseudounimolecular rate constant was calculated from the least squares slope of the plot of $\ln \left(C_{t+T}-C_{t}\right) v s . t$ (where $C_{t}$ is the conductivity observed at time $t \mathrm{~s}$ and $T$ is a time of the order of the reaction half-life) and converted into the second-order rate constant by dividing by [EtI].

Densities of the solvents and ethyl iodide were measured using an Anton Parr digital densitometer DMA O2C.

## DISCUSSION

Peak Area Ratios.-For all the piperidines examined, ethylation by axial approach at nitrogen predominates. For the $N$-methyl compound (1) the values of $A_{a} / A_{e}$ ( 1.20 for MeCN ; 1.44 for MeOH ; see Table 1), the ratio of the peak areas corresponding to axial and equatorial

Table 3
Comparative data for quaternisations of 1-alkyl-4-phenylpiperidines in acetonitrile solution

| $N$-Alkyl group |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Me |  | Et |  | $\mathrm{Pr}^{1}$ |  |
| $A_{\text {a }} / A_{\text {e }}$ | $k_{e} / k_{a}$ | $A_{A_{a} / A_{e}}$ | $k_{e} / k_{a}$ | $\overparen{A_{a} / A_{e}}$ | $k_{e} / k_{a}$ |
| $4 \cdot 0$ | $0 \cdot 7{ }^{\text {a }}$ | $2 \cdot 4$ | $1 \cdot 8{ }^{\text {a }}$ |  |  |
| $1 \cdot 3$ | $2 \cdot 5{ }^{\text {b }}$ | 1.3 | $6.2{ }^{\text {b }}$ | 1.9 | $10 \cdot 0{ }^{5}$ |
| 0.5 | $6.0{ }^{\text {c }}$ | $0 \cdot 5$ | $15.4{ }^{\text {c }}$ | $0 \cdot 45$ | $41.8{ }^{\text {c }}$ |

attack agrees with the revised values reported by McKenna et al. ${ }^{8}$ (1-1.5:1).

The effect on $A_{a} / A_{e}$ of increasing the size of the $N$ substituent in piperidine requires a compromise between

As Table 3 shows, the stereoselectivity of ethylation is intermediate between those of methylation (preference for axial attack) and benzylation (preference for equatorial approach). The proportion of axial attack is less for acetonitrile than for methanol, in which the reaction is slower, and this once again ${ }^{6}$ suggests caution in applying Bottini's criterion ${ }^{27}$ that quaternisation of the more stable conformer is favoured in solvents for which the reaction is faster. The solvent effects overall are quite small ( $c f$. Table 1).

Gross Observed Reaction Rates.-The reactions are found to be considerably faster in acetonitrile than in methanol, as expected. ${ }^{28,29}$ In the series $N$-methyl (1), $N$-ethyl (2), and $N$-isopropyl (3) compounds, the difference $\left\{\log k_{\text {obs }}(\mathrm{MeCN})-\log k_{\text {obs }}(\mathrm{MeOH})\right\}$ decreases gradually (last column of Table 4), with a slightly larger decrease for the $N$-benzyl compound (5).

The rates vary with $N$-substitution in the order $\mathrm{Me}>\mathrm{Et}>\mathrm{Pr}^{\mathrm{i}} \sim \mathrm{CH}_{2} \mathrm{Ph}$, as expected. The incremental rate decrease with substitution is not significantly solvent dependent except perhaps for $\mathrm{CH}_{2} \mathrm{Ph}$ : substitution of Et for Me causes a rate decrease (log units) of $0.76 \pm 0.04$ and of Pr $^{i}$ for $\mathrm{Me}, 1.40 \pm 0.1$. Substitution of $\mathrm{CH}_{2} \mathrm{Ph}$ for Me causes a decrease of 1.55 in MeCN and of 1.07 in MeOH .

Rate Ratios $k_{e} / k_{a}$. -The figures in Table 4 show that $k_{e} / k_{a}$ values lie in the range $2-10$. They are intermediate between those for methylation and for benzylation (Table 3) and confirm that the trend from preferred axial to preferred equatorial attack is derived largely from the change in relative rates of equatorial and axial reaction. The effect of solvent on the ratio is small but regular for the series $\mathrm{Me}, \mathrm{Et}$, and $\mathrm{Pr}^{\mathrm{i}}$ with equatorial approach slightly more favoured with the faster reactions. The influence of the $N$-substituent is considerable: as previously found for $N$-methylation and for $N$-benzylation (see

Table 4
Rate ratios and observed rates ${ }^{a}$ for quaternisation of 1-alkyl-4-phenylpiperidines by ethyl iodide

| Compound | Acetonitrile |  |  |  | Methanol |  |  |  | $\begin{aligned} & \log k_{\text {obs }}(\mathrm{MeCN})- \\ & \log k_{\text {obs }}(\mathrm{MeOH}) \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $k_{B} / k_{a}$ | $\log k_{\text {obs }}$ | $\log k_{e}$ | $\log k_{a}$ | $k_{e} / k_{a}$ | $\log k_{\text {obs }}$ | $\log k_{e}$ | $\log k_{a}$ |  |
| (1) | $2 \cdot 3$ | $3 \cdot 65$ | $3 \cdot 89$ | $3 \cdot 53$ | $2 \cdot 1$ | $2 \cdot 37$ | $2 \cdot 59$ | $2 \cdot 26$ | $1 \cdot 28$ |
| (2) | $6 \cdot 2$ | $2 \cdot 86$ | $3 \cdot 46$ | $2 \cdot 66$ | $5 \cdot 4$ | $1 \cdot 65$ | $2 \cdot 21$ | 1.48 | $1 \cdot 21$ |
| (3) | $10 \cdot 0$ | $2 \cdot 15$ | 2.98 | 1.98 | $9 \cdot 50$ | 1.08 | 1.90 | $0 \cdot 93$ | 1.07 |
| (4) | $2 \cdot 5$ | $2 \cdot 10$ | $2 \cdot 44$ | 2.04 | $2 \cdot 1$ | 1.30 | 1.57 | $1 \cdot 26$ | $0^{\prime} 80$ |

the greater proportion of $e q-N$-alkyl conformer present, which tends to increase $A_{a} / A_{e}$, and the more hindered environment which tends to discourage axial approach, and decrease $A_{a} / A_{e}$. For changing from $N$-methyl to $N$-ethyl, these two effects nearly cancel, and the $A_{a} / A_{e}$ ratio does not change appreciably (Table 1). For $N$-isopropyl the $A_{a} / A_{e}$ ratio increases to about $65 \%$ axial attack in both solvents. For $N$-benzyl the proportion of axial ethylation increases further to around $80 \%$ both in acetonitrile and in methanol.
${ }_{27}$ A. T. Bottini and M. K. O'Rell, Tetrahedron Letters, 1967, 423.

Table 3), the values of $k_{e} / k_{a}$ rise from $c a .2$ for NMe to $c a .10$ for $\mathrm{NPr}^{i}$.

Individual Rate Constants $k_{e}$ and $k_{a}$.-Both equatorial and axial attack are faster in acetonitrile than in methanol, with $k_{e}$ showing greater solvent dependence. The solvent effect on the individual rates varies in a regular way with $N$-substitution: the effect of changing the $N$-substituent varies both the equatorial and the axial rates in the order $\mathrm{Me}>\mathrm{Et}>\mathrm{Pr}^{\mathrm{i}}$ : but for a

[^2]particular compound the effect is significantly greater for $k_{a}$ than for $k_{e}$. This parallels the behaviour previously found for benzylation. ${ }^{6}$

General Conclusions.-Axial attack predominates for ethylation under all the conditions studied. However,
the equatorial : axial product ratios do approach unity, and the tendency towards axial attack is considerably less than found for methylation ${ }^{2}$ although significantly greater than found for benzylation. ${ }^{6}$
[4/128 Received, 23rd January, 1974]


[^0]:    * Duplication of quaternisation reported in ref. 6 with $1 \%$ aqueous acetonitrile as solvent.
    $\dagger$ Added in proof: It must be emphasized that the individual $k_{a}$ and $k_{e}$ values depend critically on the conformational analysis equilibrium constants for the $N$-alkylpiperidines, which may be considerably more displaced toward the alkyl-equatorial conformer than we have assumed ( $c f$. E. L. Eliel and F. W. Vierhapper, $J$. Amer. Chem. Soc., 1974, 96, 2257). However, the axial-equatorial product ratios, and the conclusions on the stereoselectivity are not affected.

    19 E. A. Guggenheim, Phil. Mag., 1926, 2, 538.
    ${ }^{20}$ J.-L. Imbach, A. R. Katritzky, and R. A. Kolinski, J. Chem. Soc. (B), 1966, 556.

[^1]:    ${ }^{21}$ I. D. Blackburne, R. P. Duke, R. A. Y. Jones, A. R. Katritzky, and K. A. F. Record, J.C.S. Perkin II, 1973, 332 .
    ${ }_{22} \mathrm{C}$. K. Ingold, ‘ Structure and Mechanism in Organic Chemistry,' G. Bell and Sons, London, 1969, 2nd edn., p. 667.
    ${ }^{23}$ R. A. Y. Jones, A. R. Katritzky, A. C. Richards, and R. J. Wyatt, J. Chem. Soc. (B), 1970, 122.
    ${ }_{24}$ W. H. Mills, J. D. Parkin, and W. J. V. Ward, J. Chem. Soc., 1927, 2613.
    ${ }_{25}{ }^{5}$ ' J. H. Paden and H. Adkins, J. Amer. Chem. Soc., 1936, 58, 2487.
    ${ }_{26}$ R. J. Bishop, L. E. Sutton, D. Dineen, R. A. Y. Jones, A. R. Katritzky, and R. J. Wyatt, J. Chem. Soc. (B), 1967, 493.

[^2]:    ${ }^{28}$ C. Lassau and J.-C. Jungers, Bull. Soc. chim. France, 1968, 2678.
    ${ }^{29}$ M. H. Abraham, J. Chem. Soc. (B), 1971, 299.

